

Ventilation of Severe Lung Contusion – More than ARDS.net

T Hardcastle

Trauma Surgeon

Durban - South Africa

Disclaimer

- All images are from my own practice at either IALCH or previously Tygerberg hospital unless otherwise mentioned
- Opinions are not necessarily those of my employer, SA Department of Health

Overview

- What do I mean by Severe Lung Contusion?
- What does ARDS.net suggest?
- Don't miss the fine-print!
- What about inflammation?
- Contralateral collateral damage
- Recruitability versus further lung injury
- What is our experience?

Spectrum and Burden of Disease

Blunt chest trauma common

- 20-30% of all major blunt trauma: Lung contusion
- Higher in adults with multiple rib # / Flail chest
- Commonest severe chest injury in children
- 25% of all trauma deaths due to chest trauma
- Up to 80% chance of pneumonia, 20% ARDS
- About 10 15% of this group is the severe injury subgroup
- Contributes to death from TBI due to hypoxia

Severe chest trauma

Mechanism of Injury

- Pulmonary contusion is a misnomer!
 - Actually shearing forces against the vertebral column
 - Intra-pulmonary lacerations with contained haemorrhage
 - Reason why it is postero-medial in blunt trauma!

Diagnosis

- CXR under-diagnosis common
- CT Chest is current gold standard (lung window)
 - Allows arch and mediastinum to be reviewed
 - Picks up occult PTX/HTX
 - Can be used to do volumetry

Severity

Minor <20% Volume

Moderate <30% Volume with hypoxia

Severe >30% LSA with PO2 < 8kPa / 60mmHg

Blunt Thoracic Trauma

IALCH Trauma Unit 2007 - 2011

Pitfalls with Severe Lung Contusion

ARDS.net Teaching

- FOR ARDS
 - PF Ratio <300!</p>
- Limit plateau pressures to <35mmHg
 - Delta P more important???
- Tidal volumes around 6ml/kg
- Rate up to 35!

- PEEP adjust to reduce F102
 - Quite high values
- No mode of ventilation better than another
- I:E ratio ideally 1:2 or greater
- Start @ 8ml/kg!!!!
- Aim for SBT

What about the fine print?

Conduct a SPONTANEOUS BREATHING TRIAL daily when:

- FiO₂ ≤ 0.40 and PEEP ≤ 8.
- PEEP and FiO₂ ≤ values of previous day.
- Patient has acceptable spontaneous breathing efforts. (May decrease vent rate by 50% for 5 minutes to detect effort.)
- Systolic BP ≥ 90 mmHg without vasopressor support.
- No neuromuscular blocking agents or blockade.

If all above criteria are met and subject has been in the study for at least 12 hours, initiate a trial of UP TO 120 minutes of spontaneous breathing with FiO2 \leq 0.5 and PEEP \leq 5:

- Place on T-piece, trach collar, or CPAP ≤ 5 cm H₂O with PS ≤ 5
- Assess for tolerance as below for up to two hours.
 - a. SpO₂ ≥ 90: and/or PaO₂ ≥ 60 mmHg
 - b. Spontaneous V_T ≥ 4 ml/kg PBW
 - c. RR ≤ 35/min
 - d. pH ≥ 7.3
 - e. No respiratory distress (distress = 2 or more)
 - > HR > 120% of baseline
 - Marked accessory musde use
 - Abdominal paradox
 - Diaphoresis
 - Marked dyspnea
- 3. If tolerated for at least 30 minutes, consider extubation.
- If not tolerated resume pre-weaning settings.

What about NIV?

Applicable, in principle, to a patient that is:

- Conscious and cooperative
- Maintaining an airway
- Haemodynamically stable
- Not needing immediate surgery
 Shows less pneumonia and shorter ICU LOS BUT......

Severe lung contusion excluded in most studies*

*Bolliger and Van Eeden Chest ,1990; 97:943-948

Hernandez G, Fernandez R, Lopez-Reina P, Cuena R, Pedrosa A, Ortiz R, Hiradier P. Noninvasive Ventilation reduces intubation in chest trauma-related hypoxemia. A Randomized Clinical Trial. Chest 2010; 137(1):74–80

NIV Candidate

Exclusion Criteria

- 1) hypercapnia (Pa co 2 . 45 mm Hg)
- orotracheal intubation indicated for another reason;
- need for emergency intubation;
- standard contraindications for NIMV (active gastrointestinal bleeding, low level of consciousness, multiorgan failure, airway patency problems, lack of cooperation, or hemodynamic instability);
- severe traumatic brain injury;
- facial trauma with pneumocephalus, skull base fracture, orbit base fracture, or any facial fracture involving a sinus;
- cervical injury when treatment contraindicated a facial mask;
- 8) bronchopleural fistula;
- 9) gastrointestinal trauma

What about severe chest trauma?

While there is a risk of ARDS – lung contusion is NOT ARDS

- Differences:
 - Variable areas of damage
 - Inflammatory component
 - BCI
 - Recruitable lung
 - Rib fractures add additional risk
 - Occult HTX & PTX common may need chest tubes

DAMPS, PAMPS and other "kines"

Role of DAMPS and PAMPS

- Pathogen associated molecular patterns
- Alarmins are endogenous initiators
 - HMGB1 trigger for inflammation

Molecule	Passive release ^a	Active nonclassical secretion	Role in inflammation/ immunity	Promoting tissue regeneration
HMGB1				
S100s		•	•	1
HDGF		•		2
HSPs		•	•	
II_la		•	•	
Uric acid			•	
Cathelicidins		3	•	•
Defensins		3	•	
EDN		3		
Galectins		•	•	
Thymosins			•	
Nucleolin		•	•	
Annexins		•	•	

DAMPs, PAMPs and alarmins: all we need to know about danger

Journal of Leukocyte Biology Volume 81, January 2007

Marco E. Bianchi¹

San Raffaele University, Chromatin Dynamics Unit, Milan, Italy

The Lung as an Inflammatory Mediator

Mechanical Ventilation

Volutrauma Barotrauma Atelectrauma Biotrauma

Release of mediators

Remote Organ Failure

Contralateral Collateral Damage

- Inflammatory reaction systemic
- Spillover during airway and pulmonary toilet
- Unappreciated pre-hospital gastric aspiration*
- Gets worse before it gets better\$
 - Overlooked in the orthopaedic ward!

^{*}Raghavendran, Shock. Nov 2008; 30(5): 508-517.

Sobertacke - Abstract in Shock, 1998

Curveballs – previous lung pathology

Aspiration or contusion?

Lobar

What about the kids?

- 6 year period 418 patients with blunt thoracic trauma
 - 84 children of whom 55 were less than ten years old.
 - fewer males in the paediatric group.
 - Injury Severity Scores (ISS) were similar
 - Presentation lactate was significantly lower in the paediatric population (p = 0.001)
- 75% pedestrian MVC
- Mortality significantly lower in the paediatric group (16.7 vs. 27.8% p = 0.037) despite worse lung contusion
- LOS similar
- Deaths mainly due to TBI (p = 0.024), but not the lungs

ITACCS approach

ITACCS

GUIDELINES FOR MANAGEMENT OF MECHANICAL VENTILATION IN CRITICALLY INJURED PATIENTS

- Early use of PEEP
- Gradual recruitment

M McCunn, MD, MIPP, (USA)
A Sutcliffe, MBChB, FRCA, (United Kindgdom)
W Mauritz, MD, PhD (Austria)
and the ITACCS Critical Care Committee*

- Use PSV modes and pressure limiting
- Permissive hyperpnoea unless TBI
- NIV is an option
 - Tidal volumes 6 8 ml/kg
 - PEEP higher than the lower inflection point
 - Limit peak/plateau pressure to < 35 cm H2O
 - Adjust I:E ratio and respiratory rate as needed to achieve above
 - Wean FiO2 to obtain paO2 80 100 mm Hg (or an oxygenation saturation of 93 97%)
 - Early conversion to pressure-limited modes of ventilation

Recruitment methods

- Traditional: So-called 40/40 maneuver
 - Cardiovascular side effects
 - Most patients did not tolerate
 - Short-lived effect
 - Requires chemical paralysis (GA)
- Modern approach: gradual PEEP and PSV increase to improve the Delta P
 - PEEP 10-12 and PSV 25-30: Plateau still <35mmHg

Recruitability and Ventilation (How I do it)

- We recruit with early use of slightly higher Vt
 - 8 to even 10ml/kg! Open lung concept.
- Early PEEP 1:5 ration with Fi02
- Pressure support / Pressure control
 - Aim to balance Vt with venous return
 - Reduce Fi02 as soon as able to maintain Sats > 92% or pO2 >8kPa
- Wean rapidly to PSV, use early tracheostomy

- Liberal use of chest tubes
- Early nutrition
- Aggressive physio
 - Vibration and suctioning
- IVI Morphine or Ketamine infusion if intubated
- Para-vertebral or epidural block with bupivicain if NIV
- Spontaneous breathing with PSV and PEEP may be prolonged: takes 5-7 days to reverse and a week or two more for the ribs to settle!

