Post-Traumatic Venous Thromboembolism in 2016

M. Margaret Knudson MD, FACS
U. Of California, San Francisco
Case Presentation: SFGH 2016

- 24 year old involved in MCC
- Presented to ED with mild hypotension
- Complaining only of severe leg pain
- Underwent full trauma evaluation
- Ortho anxious to “fix the broken bone”
Initial “Pan Scan”
Pre-operative Duplex Scan
Case Presentation Continued

• Decision made to perform immediate orthopedic procedure
• Patient did well during surgery
• Developed **acute desaturation** in the recovery area
• **PaO2= 40 mmHg!**
Immediate Post-Op CTA
Historical Perspectives

“A study of protocols of 9,882 postmortem exams including death from injury...in the traumatic group embolisms were found in 61 cases (3.8%) and in the non-traumatic group in 222 cases (2.6%). Statistically, this appears to be a significant difference.”

J.S. McCartney, 1934
Historical Perspectives

- 124 trauma patients: venograms
- Fracture patients: 35% venous thrombosis
- Thrombus found within 24 hours of injury
- Both injured/uninjured extremity
- 2/3rds with DVT-asymptomatic

Freeark et al, 1967
INCIDENCE: OCCULT DVT

- 349 injured patients: screening venography*
- None receiving prophylaxis
- Proximal DVT rate: 18%
- PE rate: 2% (43% mortality!!)

*Geerts et al, NEJM 1994
Current Data on Surveillance Bias

- 17 Trauma Centers involved in “CLOTT”
- Incidence of Clinically recognized DVT: 1-2%
- Routine Surveillance with Duplex
- **Occult DVT: 9%**
- Should they all be treated???
- Quality measure tied to reimbursement
Incidence of Occult PE after Trauma

- 90 consecutive patients; ISS ≥ 9
- Asymptomatic; no DVT
- Chest CT: between 3-7 days
- **22 had clot on CT; 4 were major!**
- 30% were receiving prophylaxis

Schultz and Brasel al J Trauma 2004
THROMBOEMBOLISM AFTER TRAUMA

AN ANALYSIS OF 1602 EPISODES FROM THE ACS NATIONAL TRAUMA DATA BANK

Annals of Surgery 2004

M. Margaret Knudson MD
Danagra G. Ikossi MD
Linda Khaw BA
Diane Morabito RN, MPH
Larisa S. Speetzen BA

The University of California, San Francisco
RESULTS

- 450,375 patients included
- 84% blunt injuries
- 31% ISS>10
- 998 pts: DVT (0.36%)
- 522 pts: PE (0.13%)
- 82 pts: both DVT/PE
- PE mortality: 18.7%
RISK FACTOR ANALYSIS

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock on admission (BP < 90 mHg)</td>
<td>1.95</td>
</tr>
<tr>
<td>Age ≥ 40 yrs.</td>
<td>2.29</td>
</tr>
<tr>
<td>Head injury (AIS ≥ 3)</td>
<td>2.59</td>
</tr>
<tr>
<td>Pelvic fracture</td>
<td>2.93</td>
</tr>
<tr>
<td>Lower extremity fracture</td>
<td>3.16</td>
</tr>
<tr>
<td>Spinal cord injury with paralysis</td>
<td>3.39</td>
</tr>
</tbody>
</table>

p < .0001 for all factors
RISK FACTOR ANALYSIS (CONT’)

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major surgical procedure</td>
<td>4.32</td>
</tr>
<tr>
<td>Venous injury</td>
<td>7.93</td>
</tr>
<tr>
<td>Ventilator days > 3</td>
<td>10.62</td>
</tr>
</tbody>
</table>

$p < .0001$ for all factors
Multivariate Analysis

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head injury (AIS ≥ 3)</td>
<td>1.24</td>
</tr>
<tr>
<td>Major operative procedure</td>
<td>1.53</td>
</tr>
<tr>
<td>Lower extremity fracture (AIS ≥ 3)</td>
<td>1.92</td>
</tr>
<tr>
<td>Age ≥ 40 years</td>
<td>2.01</td>
</tr>
<tr>
<td>Venous injury</td>
<td>3.56</td>
</tr>
<tr>
<td>Ventilator days > 3</td>
<td>8.08</td>
</tr>
</tbody>
</table>

$p ≤ 0.0125$ for all factors
VENA CAVA FILTERS

- Procedure code: “IVC plication”
- 3,883 patients
- 86%: prophylaxis (no VTE)
- PE rate in filter group: 4.7%
- 410 patients: no risk factors
- Permanent IVC filters
CONCLUSIONS

• Clinically significant VTE rates: low
• 90% VTE pts. have at least 1 risk factor
• VTE risk- varies with each factor
• Role of IVC filters: re-examined
PROPOSED ALGORITHM

Injured Patient

High Risk Factor
\((OR \text{ for } VTE = 2-3)\)
- Age \(\geq 40\)
- Pelvic fx
- Lower extremity fx
- Shock
- Spinal cord injury
- Head trauma \((AIS \geq 3)\)

Very High Risk Factor
\((OR \text{ for } VTE = 4-10)\)
- Major operative procedure
- Venous injury
- Ventilator days > 3
- 2 or more high risk factors

Contraindication for heparin?

No
- LMWH*

Yes
- LMWH* and mechanical compression

Mechanical compression and serial CFD OR temporary IVC filter

*Prophylactic dose
Knudson’s Trauma Triad

Paralysis
Immobilization
Stasis

Venous Trauma
Fractures
Endothelial Damage

Hypercoagulability

Multiple Transfusions
Severe Injuries
Practice Patterns VTE Prophylaxis in Trauma

- 315 patients: 11% VTE
- Early prophylaxis: 4% risk
- Prophylaxis after 4 days: 3 times greater!
Filter Fever!
Prophylactic Vena Cava Filters?

- Problems:
 - Recurrent PE: 3%
 - No protection against DVT
 - 10%: caval thrombosis
 - permanence: leg edema
 - migration/IVC perforation
 - timing: 6% PE within 24 hours
Retrievable Filters: “NOT”

- May be retrieved within 5 days
- May be left in place: 30 days?
- Solution for high risk patients?
- Leads to 3-fold increase use
- AAST study: >400 patients
- Only 22% were retrieved!
- $100,000/ PE prevented

Antevil J Trauma 2006
Karmy-Jones J Trauma 2007
3738 POST-TRAUMATIC PULMONARY EMBOLI

A NEW LOOK AT AN OLD DISEASE

M.M. Knudson, D. Gomez, B. Haas, MJ Cohen, AB Nathens

U. California San Francisco, U. Toronto
Historical Perspective: Pulmonary Emboli

- Recognized post-injury complication: 1934*
- Mortality rates: **25-50%**
- Clinical presentation: acute hypoxia, collapse
- Diagnostic study: **autopsy**

McCartney, Am J Pathology
Current Perspective: PE

- “Potentially preventable” complication
- Clinical Presentation: unexplained drop PaO_2
- Often incidental finding: multidector CT scan
- Quality indicator: CMS, JACHO, AHRQ
Purpose

- To describe the current incidence of pulmonary embolism following trauma in the United States
- To determine the PE-attributable mortality
Major Hypotheses

1. Risk factors for PE-different from DVT
2. PE-incidence rates are increasing
3. PE-attributable mortality is decreasing
Methods

- **ACS/NTDB**
- Adult patients: Level I/II centers*
- **Current** version: 2007-2009
- **Historical** comparison: 1994-2001 (version 1)
- **Comparison**: centers contributing to both
- Hierarchical logistic regression models: risk factors, mortality

(centers reporting at least one complication)
Results: Current NTDB Cohort

- 888,652 Patients; 326 Trauma Centers
- Overall mortality: 1.8%
- 9,398 episodes: DVT (1.06%)
- 3,738 episodes: PE (0.42%)
- Only 20% with PE had DVT reported
Risk Factor Analysis

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>DVT (9,398); OR (95% CI)</th>
<th>PE (3,738); OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe TBI</td>
<td>1.34 (1.20-1.48)*</td>
<td>0.87 (0.73-1.04)</td>
</tr>
<tr>
<td>Ventilator Days >3</td>
<td>5.31 (5.05-5.60)*</td>
<td>3.81 (3.48-4.18)</td>
</tr>
<tr>
<td>Severe Chest Injury (AIS≥3)</td>
<td>1.07 (1.01-1.12)</td>
<td>1.42 (1.30-1.55)*</td>
</tr>
<tr>
<td>Lower Ext. Fracture (AIS≥3)</td>
<td>1.53 (1.45-1.62)</td>
<td>1.81 (1.67-1.97)</td>
</tr>
<tr>
<td>Pelvic Fracture</td>
<td>1.32 (1.24-1.41)</td>
<td>1.19 (1.08-1.32)</td>
</tr>
<tr>
<td>Spine Injury (AIS≥4)</td>
<td>1.58 (1.42-1.75)</td>
<td>1.91 (1.61-2.27)</td>
</tr>
<tr>
<td>Shock (SBP≤90)</td>
<td>1.23 (1.14-1.34)</td>
<td>1.19 (1.04-1.36)</td>
</tr>
</tbody>
</table>

Knudson, et al., Annals of Surgery, 2004
Results: IVC Filters

- 16,809 patients: 1.9% of total population
- 13,201: Prophylactic
- Center clustering: 0%-10.6%
Changes over Time: PE

<table>
<thead>
<tr>
<th></th>
<th>Historical Number (%)</th>
<th>Adjusted OR (95% CI)</th>
<th>Current Number (%)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Rate</td>
<td>499 (0.21%)</td>
<td></td>
<td>890 (0.49%)</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Mortality-PE</td>
<td>73 (15%)</td>
<td>4.05 (3.02-5.46)</td>
<td>111 (11%)</td>
<td>2.42 (1.91-3.06)</td>
</tr>
</tbody>
</table>
Discussion: Potential Explanation

• 1. True increased incidence of PE
• 2. Better reporting in NTDB/ NTDS
• 3. “Sicker” patients in current cohort
• 4. Failure of VTE prophylactic measures
• 5. Improved methods of detection
Uncoupling DVT and PE

Severely Injured Patient
- Shock
- Coagulopathy

Protein C Depletion?

Hypercoagulable State

TBI
Fractures

Stasis
Venous Injury

DVT

Chest Injury

Inflammation

PE
PE rates versus Prophylactic IVC filters

PE rates

<table>
<thead>
<tr>
<th></th>
<th>Historical</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE rates</td>
<td>0.21%</td>
<td>0.49%</td>
</tr>
</tbody>
</table>

Prophylactic IVC Filters

<table>
<thead>
<tr>
<th></th>
<th>Historical</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVC Filters</td>
<td>0.75%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
Conclusions

- **PE**: increasingly recognized post injury
- **PE**: decreased attributable mortality
- **PE**: may develop de novo
- **PE**: chest trauma/inflammation
- **PE**: may not be prevented by filters
Knudson’s Trauma Triad

Paralysis
Immobilization
Stasis
Endothelial damage
Venous trauma
Fractures

Hypercoagulability
Multiple transfusions
Severe injuries

Knudson, et al., J Trauma, 1994
POC Coagulation Monitoring

Thromb-elastograph
(Haemoscope Corp.)

Sonoclot
(Sienco Inc.)
Fibrinolysis Shutdown: New VTE Target?