Complex hepatic trauma

Ari Leppäniemi, MD
Abdominal Center
Meilahti hospital
University of Helsinki
Finland

Liver Injury Scale

- I subcapsular (<10%) hematoma, <1cm laceration</p>
- II subcapsular (10-50%), intraparenchymal (<10 cm) hematoma
 - 1-3 cm deep laceration (<10 cm long)
- III subcapsular (>50% or exp.), intraparenchymal (>10 cm or exp.) or ruptured hematoma
 - >3cm deep laceration
- IV parenchymal disruption (25-75% of lobe or 1-3 segments in one lobe)
- V parenchymal disruption (>75% of lobe, >3 segments)
 - juxtahepatic venous injury, hepatic avulsion

Moore et al. 1995

Management strategy of liver injuries

- same principles apply to blunt and penetrating injuries
- unstable hemodynamics
 - urgent laparotomy → intraoperative assessment of all injuries → definitive repair or damage control
- stable hemodynamics
 - assessment of severity and other injuries (CT)
 - nonoperative management
 - adjuncts: angiography, endoscopy
 - operative management
 - "surgical" injuries, failed NOM

Severe hepatic trauma: Nonoperative management, definitive repair, or damage control surgery?

- n = 144 Grade III-V liver injuries (94% blunt)
- mean ISS 31, shock on admission 56 (39%)
- early laparotomy 50 (35%)
 - damage control 21 (42% of all operated injuries)
 - definitive repair 22 (44% of all operated injuries)
 - non-therapeutic 7
- nonoperative management 94 (65%)
 - failed 8 (9% of NOM patients)

Leppäniemi et al. WJS 2011;35:2643

Complex liver injuries (Helsinki)

Factors predicting early laparotomy for blunt trauma patients (univariate analysis)

	OR 95% CI
Shock on admission	30.72 11.00-85.8
Splenic injury grade 4-5	3.86 1.03-14.5
Head injury grade 4-5	3.54 1.46-8.59
Liver injury grade 5	3.5 0.83-10.82
Multiple injury	3 0.83-10.82
Liver injury grade 4-5	0.92 0.43-1.93
Renal injury grade 4-5	0.82 0.24-2.73
	Leppäniemi et al. WJS 2011;35:2643

CT risk factors for operative treatment in initially stable patients with blunt liver trauma (n=214)

- more frequent findings in operated patients:
 - intraperitoneal contrast extravasation
 - hemoperitoneum in 6 compartments
 - maceration > 2 segments, high liver injury grade
 - deep laceration (>5 cm), porta hepatis involvement
- logistic regression:
 - extravasation = continuous bleeding (RR 12.5)
 - hemoperitoneum = massive bleeding (RR 22)

Fang et al. 2006

Complex liver injuries (Helsinki)

Factors predicting failure (9%) of NOM (univariate analysis)

	OR	95% CI
Associated Grade 4-5 splenic in	jury 14.00	1.67-117.55
Shock on admission	6.82	1.49-31.29
Renal injury grade 4-5	2.85	0.5-16.3
Multiple injury	1.72	0.2-14.98
Head injury grade 4-5	0.97	0.11-8.69
Liver injury grade 4-5	0.62	0.15-2.66
	Leppäniemi et a	I. WJS 2011;35:2643

Key surgical techniques

Incision

Massive bleeding

hemorrhage!

Techniques for temporary control

Scoop out blood

- 4 quadrant packing
- determine source of bleeding

Manual compression
Pringle maneuver
Perihepatic packing
REBOA?

Pringle Maneuver

- finger dissection
- compression
- vascular clamp
- easier from patient's left
- 15 (60) minutes
- intermittent

Temporary packing

Stop Think Assess Decide

Critical factors favoring damage control approach

- Critical factors (the deadly triad)
 - Hypothermia : T° < 34°</p>
 - Severe metabolic acidosis
 - pH < 7.2
 - Lactate > 5 mmol/l
 - Coagulopathy
 - Massive transfusion
- Secondary factors
 - Severe injury
 - Operating time > 90 minutes

Definitive perihepatic packing

Through - and - thorough injury

Internal tamponade

- balloon (Poggetti 1992)
- plastic bag pulled though the injury and filled with sponges (Ong 2007)
- appropriate size"cigar"
 constructed from absorbable
 material and pulled into the
 tract
 - does not require removal

Leave the abdomen open abdomen, temporary abdominal cover

Angiographic embolization of liver injuries

- 538 liver injuries, Gr III-VI (early angio as adjunct to oper.)
- 116 patients (22%) for angiography, 71 (13%) embolized
- liver-injury related death in 8/71 (11%)
- 43 (61%) patients liver-related complications
- hepatic necrosis (30), bile leak (14), abscess (12), gallbladder infarct (5), rebleeding (2), pseudoaneurysm, cholecystitis, biliary stricture (1 each)
- management of hepatic necrosis: lobectomy 16, operative debridement + percutaneous drainage 14
- Conclusion: AE useful adjunct to damage control surgery

Dabbs et al. 2009

When to remove the packs?

- too early → rebleeding, too late → infection
- 71 patients with damage control laparotomy
 - liver, pelvis, retroperitoneum, splenic bed

Packing (hr)	Infection	Re-bleeding
24	4.8%	42.9%
48	22.2%	14.8%
72	31.6%	10.5%
96	67%	0
120-144	100%	0
		Ordonez et al. 2009

2-3 days later ...

Definitive repair: surgical goals

- hemostasis
 - liver parenchyma
 - juxtahepatic veins
- preserving liver function
 - blood supply
 - amount of parenchyma
- infection control
 - removing devitalized tissue
 - controlling bile leaks

Liver injury → **graded response**

- start with the simplest hemostatic option
- if ineffective, be ready with an alternative hemostatic option

No bleeding, no bile leak → no action

Superficial bleeding with capsular avulsion → local hemostatics

Capsular bleeding → suture

Peripheral injury → suture

If bile leak → drain

Mobilization?

Major laceration → deep liver suture (pledgets or omentum if needed)

Finger fracture hepatotomy and vessel ligation

Nonanatomical resection

- resection along injury lines
- no hilar preparation
- ligation of vessels and bile ducts
- defect left open

Juxtahepatic venous injury

- suspect when Pringle does not help
- before mobilizing a retrohepatic hematoma: think!
 - perihepatic packing often safest
- suture repair after mobilization and initial vascular control
- shunts complicated, seldom used

Perihepatic drainage after major liver procedures

Complex liver injuries (Helsinki)

- overall mortality rate 21/144 (15%), 8 liver-related
- factors predicting death (univariate)

	OR	95% CI
Head injury (AIS 4-5)	13.75	4.8-39.36 *
Shock on admission	13.42	3.73-48.30 *
Compression injury	12.9	3.59-46.47
Laparotomy	8.50	2.69-26.90
Damage control laparotomy	6.35	2.25-17.92
Laparotomy <12 hours	6.29	2.26-17.51
Liver injury Grade IV-V	3.11	1.04-9.34
4 1 161 4 1 141 1 4		

^{*} significant in multivariate analysis

Leppäniemi et al. WJS 2011;35:2643

Summary

- 1. Which injuries should be managed operatively?
- hemodynamically unstable patients
- continuous or massive bleeding on CT
- associated high grade splenic injury
- failed nonoperative management
- 2. When to apply damage control surgery?
- physiological exhaustion of the patient and major liver trauma or multiple injuries
- 3. When to consider interventional radiology?
- angio: extravasation on CT (NOM), after damage control?
- percutaneous drainage of bile collections (+ ERCP)